Cou rse Typ e	Course Code	Name of Course	L	T	P	Cre dit
D E	NMCD525	Algebraic Coding Theory	3	0	0	3

Prerequisite

Advanced Algebra

Course Objective

• The objective of this course is to introduce the fundamental idea of the Coding Theory.

Learning Outcomes

Applicable in Information and Communication theory.

U n it N	Topics to be Covered	Contact Hours	Learning Outcome		
1	Basic Concepts: Idea behind use of codes, block codes and linear codes, repetition codes, nearest neighbour decoding, syndrome decoding, requisite basic ideas in probability, Shannon's theorem (without proof).	9	The main outcome of this unit is to develop the idea of Linear codes and repetition codes and their applications in decoding.		
2	Good linear and nonlinear codes: Binary Hamming codes, dual of a code, constructing codes by various operations, simplex codes, Hadamard matrices and codes constructed from Hadamard and conference matrices, Plotkin bound and various other bounds, Gilbert-Varshamov bound.	8	The main outcome of this unit to develop the idea of different kind of linear and nonlinear codes and their corresponding bounds.		
3	Reed-Muller and related codes: First order Reed- Muller codes, RM code of order r, Decoding and Encoding using the algebra of finite field with characteristic two.	7	The main outcome of this unite to develop the idea of Reed Muller codes which is very useful in study of public key cryptosystem.		
4	Perfect codes: Weight enumerators, Kratchouwk polynomials, Lloyd's theorem, Binary and ternary Golay codes, connections with Steiner systems.	8	The main outcome of this unit is to develop the idea of some important codes like Golay codes, and Perfect codes which are use full in decoding.		
5	Cyclic codes: The generator and the check polynomial, zeros of a cyclic code, the idempotent generators, BCH codes, Reed Solomon codes, Quadratic residue codes, generalized RM codes.	10	Learning outcome: The main outcome of this unit is discuss the different codes like BCH, Reed Soloman codes which are very useful in Study of public key cryptosystem.		
	Total				

Text Books:

1. S. Ling and C. Xing, Coding Theory: A First Course, Cambridge University Press, 2004

Reference Books:

- 1. J. H. van Lint, Introduction to Coding Theory, Springer, 1999.
- 2. W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.